5-(4-amino-1-propan-2-yl-3-pyrazolo[3-4-d]pyrimidinyl)-1-3-benzoxazol-2-amine has been researched along with Tuberous-Sclerosis* in 2 studies
2 other study(ies) available for 5-(4-amino-1-propan-2-yl-3-pyrazolo[3-4-d]pyrimidinyl)-1-3-benzoxazol-2-amine and Tuberous-Sclerosis
Article | Year |
---|---|
Evaluation of Hsp90 and mTOR inhibitors as potential drugs for the treatment of TSC1/TSC2 deficient cancer.
Inactivating mutations in either TSC1 or TSC2 cause Tuberous Sclerosis Complex, an autosomal dominant disorder, characterized by multi-system tumor and hamartoma development. Mutation and loss of function of TSC1 and/or TSC2 also occur in a variety of sporadic cancers, and rapamycin and related drugs show highly variable treatment benefit in patients with such cancers. The TSC1 and TSC2 proteins function in a complex that inhibits mTORC1, a key regulator of cell growth, which acts to enhance anabolic biosynthetic pathways. In this study, we identified and validated five cancer cell lines with TSC1 or TSC2 mutations and performed a kinase inhibitor drug screen with 197 compounds. The five cell lines were sensitive to several mTOR inhibitors, and cell cycle kinase and HSP90 kinase inhibitors. The IC50 for Torin1 and INK128, both mTOR kinase inhibitors, was significantly increased in three TSC2 null cell lines in which TSC2 expression was restored. Rapamycin was significantly more effective than either INK128 or ganetespib (an HSP90 inhibitor) in reducing the growth of TSC2 null SNU-398 cells in a xenograft model. Combination ganetespib-rapamycin showed no significant enhancement of growth suppression over rapamycin. Hence, although HSP90 inhibitors show strong inhibition of TSC1/TSC2 null cell line growth in vitro, ganetespib showed little benefit at standard dosage in vivo. In contrast, rapamycin which showed very modest growth inhibition in vitro was the best agent for in vivo treatment, but did not cause tumor regression, only growth delay. Topics: Animals; Benzoxazoles; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; HSP90 Heat-Shock Proteins; Humans; Male; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Inbred C57BL; Mice, Nude; Mutation; Naphthyridines; Neoplasms; Protein Kinase Inhibitors; Pyrimidines; Signal Transduction; TOR Serine-Threonine Kinases; Tuberous Sclerosis; Tuberous Sclerosis Complex 1 Protein; Tuberous Sclerosis Complex 2 Protein; Xenograft Model Antitumor Assays | 2021 |
Equivalent benefit of rapamycin and a potent mTOR ATP-competitive inhibitor, MLN0128 (INK128), in a mouse model of tuberous sclerosis.
Tuberous sclerosis complex (TSC) is a hamartoma syndrome in which brain, renal, and lung tumors develop and cause both morbidity and death. Loss of either TSC1 or TSC2 in TSC hamartomas leads to activation of mTORC1. Rapamycin and related drugs have been shown to have clinical benefit for these tumors in patients with TSC and those with sporadic forms of TSC-related neoplasms. However, lifelong therapy seems to be required, as tumors are not eliminated by this treatment. We examined the potential benefit of MLN0128, a novel potent mTOR ATP-competitive inhibitor, as a therapeutic strategy for renal cystadenomas that develop in A/J Tsc2(+/-) mice. Rapamycin given by intraperitoneal injection at 3 mg/kg 3 times per week, and MLN0128 given by gavage at 0.75 mg/kg 5 times per week had equivalent effects in suppressing tumor development during a 4-week treatment period, with an approximate 99% reduction in microscopic tumor cell volume. Marked reduction in activation of mTOR complex (mTORC)1 and blockade of cell growth was seen with both drugs, whereas only MLN0128 treatment had effects in blocking mTORC2 and 4EBP1 phosphorylation. However, when either drug was discontinued and mice were observed for two additional months, there was dramatic recovery of tumor growth, with extensive proliferation. Hence, longlasting tumor growth control is not achieved with transient treatment with either drug, and MLN0128 and rapamycin have equivalent therapeutic benefit in this mouse model. Differences in side-effect profiles might make MLN0128 more attractive for treatment of patients with TSC-related tumors, but will require additional study in humans. Topics: Animals; Benzoxazoles; Cell Growth Processes; Cystadenoma; Disease Models, Animal; Immunohistochemistry; Kidney Neoplasms; Mechanistic Target of Rapamycin Complex 1; Mice; Multiprotein Complexes; Phosphorylation; Pyrimidines; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Tuberous Sclerosis | 2013 |